Search results for "X-ray burst"

showing 10 items of 15 documents

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

2018

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

Design sensitivityneutron star: binarygravitational radiation: stochasticAstronomyX-ray binaryGeneral Physics and AstronomyAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationGravitational wave backgroundGravitational Waves Neutron Stars Stochastic Background Virgo LIGOblack holeLIGOstochastic modelQCQBPhysicsGAMMA-RAY BURSTSSignal to noise ratioStochastic systemsBlack holesGravitational effectsarticleAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sources Experimental studies of gravity Gravitational WavesGravitationBinary neutron starsX-ray bursterBinsAstrophysics::High Energy Astrophysical PhenomenaMERGERSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionBinary pulsarNeutron starsSTAR-FORMATIONPhysics and Astronomy (all)General Relativity and Quantum CosmologyBinary black holebinary: coalescence0103 physical sciencesFrequency bandsddc:530RATESINTERFEROMETERS010306 general physicsAstrophysics::Galaxy AstrophysicsNeutronsGravitational Waves010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundgravitational radiationAstronomyNeutron Stars530 Physikbinary: compactsensitivityStarsLIGObackground: stochasticEVOLUTIONsignal noise ratioVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionStellar black holeStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHIGH-REDSHIFTneutron star: coalescencePhysical Review Letters
researchProduct

INTEGRAL high energy monitoring of the X-ray burster KS 1741-293

2007

KS 1741-293, discovered in 1989 by the X-ray camera TTM in the Kvant module of the Mir space station and identified as an X-ray burster, has not been detected in the hard X band until the advent of the INTEGRAL observatory. Moreover this source has been recently object of scientific discussion, being also associated to a nearby extended radio source that in principle could be the supernova remnant produced by the accretion induced collapse in the binary system. Our long term monitoring with INTEGRAL, covering the period from February 2003 to May 2005, confirms that KS 1741-293 is transient in soft and hard X band. When the source is active, from a simultaneous JEM-X and IBIS data analysis, …

PhysicsHigh energyAccretion (meteorology)X-ray bursterAstrophysics (astro-ph)X bandFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsPower lawSpace and Planetary ScienceObservatoryBlack-body radiationSupernova remnant
researchProduct

Models and Astrophysical Parameters of High Mass X-ray Binaries

1996

The objective of this work is the High Mass X-ray Binaries. These systems consist of a neutron star orbiting around a star of spectral type OB. According to the luminosity class of the optical companion they split into Supergiant X-ray binaries and Be/X-ray systems. In both systems the high energy radiation is due to the accretion phenomenum, but in the first case the accreted metter comes from the strong stellar wind of the primary and in the second case it comes from the circumstellar envelope surrounding the Be star equator. In this work I concentrate on the optical and infrared bands of the electromagnetic spectrum although a discussion of the X-ray characteristics for some systems is a…

PhysicsX-ray bursterBe starAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryPhotometric systemAstronomyAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCircumstellar envelopeAstrophysicsLuminosityNeutron starSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsEquivalent widthAstrophysics::Galaxy AstrophysicsPublications of the Astronomical Society of the Pacific
researchProduct

High X-Ray Luminosity from Dynamo Stars

1981

In the present work we intend to show that a stellar dynamo mechanism can produce high X-ray luminosities and also give account for modulation periods of the order thousand seconds or larger.

PhysicsX-ray bursterAstrophysics::High Energy Astrophysical PhenomenaStellar rotationStellar magnetic fieldAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLuminosityStarsDynamo theoryAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Galaxy AstrophysicsMain sequenceDynamo
researchProduct

The X‐ray emission of the supernova remnant W49B: indications of a jet‐like explosion

2007

We report on an XMM-Newton EPIC observation of the galactic supernova remnant W49B, which, on the basis of previous Chandra observations, has been supposed to be the first remnant of a gamma-ray burst discovered in our galaxy. We performed a spatially resolved spectral analysis, which revealed oversolar abundances of Si, S, Ar, Ca, and Fe. Moreover, a high overabundance of Ni is required in the bright central elongated region. Our results support a scenario where the remnant was generated by an asymmetric bipolar explosion where the eastern jet is hotter and more Fe-rich than the western one. An alternative interpretation which associates the X-ray emission with spherically symmetric ejecta…

PhysicsJet (fluid)Astrophysics::High Energy Astrophysical PhenomenaAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsNear-Earth supernovaGalaxySupernovaNucleosynthesisX-ray burstsSupernova remnants X-ray sourceAstrophysics::Solar and Stellar AstrophysicsEjectaSupernova remnantHypernovaAstrophysics::Galaxy AstrophysicsAIP Conference Proceedings
researchProduct

Can gravity perturbations explain QPOs?

2007

We show the results of some numerical simulations trying to reproduce the QPO behavior in black hole and neutron star sources. Our simulations are based on the idea that a nearly periodic luminosity oscillation can be obtained from a perturbation of the source gravitational field with a sinusoidal time behavior. We find that some specific features of the QPO phenomenon can be described by this simple model, but the required amplitude of the gravity perturbation is more than 1% of the unperturbed gravitational field. If the hypothesis is formed that such a perturbation is due to a density fluctuation (of the accretion disk or the source itself, in the case of the neutron star) going around t…

Black holePhysicsGravitationNeutron starAmplitudeX-ray bursterGravitational fieldAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryStellar black holeAstrophysics
researchProduct

High Resolution Spectroscopy of 4U 1728-34 from a Simultaneous Chandra-RXTE Observation

2004

We report on a simultaneous Chandra and RossiXTE observation of the LMXB atoll bursting source 4U 1728-34 performed on 2002 March 3-5. We fitted the 1.2-35 keV continuum spectrum with a blackbody plus a Comptonized component. An overabundance of Si by a factor of ~2 with respect to Solar abundance is required for a satisfactory fit. Large residuals at 6-10 keV can be fitted by a broad (FWHM ~ 1.6 keV) Gaussian emission line, or, alternatively, by absorption edges associated with Fe I and Fe XXV at ~7.1 keV and ~9 keV, respectively. In this interpretation, we find no evidence of a broad, or narrow Fe Kalpha line, between 6 and 7 keV. We tested our alternative modeling of the iron Kalpha regi…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Continuum (design consultancy)X-ray binaries X-ray sources X-ray bursts Spectroscopy and spectrophotometry X-rayFOS: Physical sciencesHigh resolutionAstrophysicsAstrophysicsFull width at half maximumBlack-body radiationEmission spectrumAbsorption (electromagnetic radiation)SpectroscopyLine (formation)
researchProduct

Discovery and Identification of MAXI J1621-501 as a Type I X-Ray Burster with a Super-orbital Period

2019

MAXI J1621-501 is the first Swift/XRT Deep Galactic Plane Survey transient that was followed up with a multitude of space missions (NuSTAR, Swift, Chandra, NICER, INTEGRAL, and MAXI) and ground-based observatories (Gemini, IRSF, and ATCA). The source was discovered with MAXI on 2017 October 19 as a new, unidentified transient. Further observations with NuSTAR revealed 2 Type I X-ray bursts, identifying MAXI J1621-501 as a Low Mass X-ray Binary (LMXB) with a neutron star primary. Overall, 24 Type I bursts were detected from the source during a 15 month period. At energies below 10 keV, the source spectrum was best fit with three components: an absorbed blackbody with kT = 2.3 keV, a cutoff p…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010504 meteorology & atmospheric sciencesX-ray bursterX-ray transient sourceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGalactic planeX-ray bursterLight curveOrbital period01 natural sciencesLow-mass X-ray binary starNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Science0103 physical sciencesRadiative transferEmission spectrumLow MassAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics0105 earth and related environmental sciencesAstrophysical Journal
researchProduct

Accretion disks around binary black holes of unequal mass: General relativistic MHD simulations of postdecoupling and merger

2014

We report results from simulations in general relativity of magnetized disks accreting onto merging black hole binaries, starting from relaxed disk initial data. The simulations feature an effective, rapid radiative cooling scheme as a limiting case of future treatments with radiative transfer. Here we evolve the systems after binary-disk decoupling through inspiral and merger, and analyze the dependence on the binary mass ratio with $q\ensuremath{\equiv}{m}_{\text{bh}}/{M}_{\mathrm{BH}}=1,1/2$, and $1/4$. We find that the luminosity associated with local cooling is larger than the luminosity associated with matter kinetic outflows, while the electromagnetic (Poynting) luminosity associated…

AstrofísicaPhysicsNuclear and High Energy PhysicsActive galactic nucleusX-ray bursterAstrophysics::High Energy Astrophysical PhenomenaAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsMass ratioBlack holeBinary black holeIntermediate-mass black holeAstronomiaStellar black holeSpin-flipAstrophysics::Galaxy AstrophysicsPhysical Review D
researchProduct

Broadband observations of the X-ray burster 4U1705-44 with Beppo SAX

2016

4U 1705-44 is one of the most-studied type I X-ray burster and Atoll sources. This source represents a perfect candidate to test different models proposed to self-consistently track the physical changes occurring between different spectral states because it shows clear spectral state transitions. The broadband coverage, the sensitivity and energy resolution of the BeppoSAX satellite offers the opportunity to disentangle the components that form the total X-ray spectrum and to study their changes according to the spectral state. Using two BeppoSAX observations carried out in August and October 2000, respectively, for a total effective exposure time of about 100 ks, we study the spectral evol…

X-ray bursterAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsX-rays: general01 natural sciencesSpectral lineAccretion accretion diskStars: individual: 4U 1705-44Settore FIS/05 - Astronomia E Astrofisica0103 physical sciencesBlack-body radiationX-rays: star010303 astronomy & astrophysicsLine (formation)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicX-rays: binarieStars: neutronNeutron starSpace and Planetary ScienceReflection (physics)individual: 4U 1705-44; Stars: neutron; X-rays: binaries; X-rays: general; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion disks; Stars]Astrophysics - High Energy Astrophysical Phenomena
researchProduct